1. Реостат как элемент управления
На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.
2. Устройство реостата
Рис. 1. Устройство реостата
На рисунке 1 представлен реостат без оболочки. Это сделано для того, чтобы можно было посмотреть все его части. На керамическую трубу (1) намотан провод (2). Его концы выведены к двум контактам (3а). Также имеется штанга, в конце которой расположен контакт (3б). По этой штанге движется скользящий контакт (4), так называемый «ползун».
Если расположить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если передвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, его длина возрастет, сопротивление увеличится, а сила тока уменьшится. Если же передвинуть «ползун» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, и сила тока в цепи возрастет.
Рис. 2. Реостат
Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.
3. Изображения реостата на схемах
Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):
Рис. 3. Изображение реостата
Красный прямоугольник соответствует сопротивлению, синий контакт – подводящий к реостату провод, зеленый – скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо – увеличится. Также может использоваться следующее изображение реостата (рис. 4):
Рис. 4. Еще одно изображение реостата
Прямоугольник обозначает сопротивление, а стрелка – то, что его можно изменять.
4. Включение реостата в электрическую цепь
В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):
Рис. 5. Включение реостата в цепь с лампой накаливания
Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.
Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):
Рис. 6. Включение резистора в цепь с вольтметром
В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.
5. Применение реостата
Реостат – достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).
Рис. 7. Реостат в защитном кожухе
На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.
1. Сопротивления в электрической цепи
Прибор, основанный на сопротивлении проводника, называется резистором. Главное свойство проводника – это наличие у него электрического сопротивления. Поэтому под словами «последовательное соединение резисторов», «последовательное соединение проводников» и «последовательное соединение сопротивлений» мы будем понимать одно и то же.
Последовательным соединением называется соединение, когда элементы идут друг за другом, чередуются. Естественно, в электрических цепях обычно используется смешанное соединение, то есть комбинация последовательного и параллельного соединений. Но на этом уроке речь пойдет именно о последовательных соединениях. Нужно научиться рассчитывать электрические цепи, то есть вычислять напряжение, силу тока в цепи, чтобы знать, какие приборы и как можно включать в цепь. Об этом и пойдет речь в дальнейшем.
2. Электрическая схема последовательного соединения проводников
Рис. 1. Последовательное соединение резисторов
На рисунке 1 представлены три резистора, которые соединены друг за другом. Это и есть так называемое «последовательное соединение». В дальнейшем мы будем рассматривать всего два резистора, которые соединены последовательно, но смысл от этого не изменится, и полученные формулы будут также справедливы для любого числа проводников, соединенных последовательно.
1- лампа
2 — источник питания
3- ключ
Рис. 2. Последовательное включение двух ламп в электрическую цепь
На рисунке 2 изображено последовательное включение двух ламп (1а и 1б). Мы заменили ими проводники, но суть от этого не поменяется, так как лампы также имеют свое сопротивление. Также в цепи присутствует амперметр (А) для измерения силы тока в цепи. Есть еще 2 важных элемента: это вольтметры V1 и V2, которые измеряют напряжение (или падение напряжения) соответственно на лампах 1а и 1б. Еще есть источник питания (2) и ключ (3). Если ключ разомкнут, то ток в цепи не течет. Если же его замкнуть, то с помощью приборов можно измерить силу тока и напряжение в цепи. Примером такого соединения является ёлочная гирлянда, поскольку на самом деле она представляет собой последовательно соединенные лампы (рис. 3).
Рис. 3. Ёлочная гирлянда
3. Измерения силы тока и напряжения в цепи при последовательном соединении
Теперь посмотрим, что же произойдет, если замкнуть ключ. Рассмотрим схему на рис. 4, которая отличается от схемы, изображенной на рис. 2 только тем, что амперметр расположен между лампами.
1- лампа
2 — источник питания
3- замкнутый ключ
Рис. 4. Включение амперметра между лампами
Амперметр изменил свое положение в цепи. Но если смотреть на его показания, то они не изменятся при перемещении амперметра в любое место на схеме последовательного соединения. Значит, можно сказать, что сила тока в лампе 1а (I1) будет равна силе тока в лампе 1б (I2) и равна общему току, протекающему в электрической цепи. То есть I1 = I2 = I. Это можно сравнить с течением реки: количество воды, протекающее за одно и то же время в разных местах этой реки, будет одинаково.
Стоит также учесть, что, хоть и вольтметры соединены параллельно с лампами, это приборы высшего качества с очень высоким сопротивлением. Значит, ток через них будет идти минимальный, и такое искажение можно не учитывать.
Теперь рассмотрим схему, когда вольтметр измеряет напряжение сразу на двух лампах (рис. 5):
Рис. 5. Измерение напряжения на двух лампах
На рис. 4. вольтметрами V1 и V2 измерялось напряжение на каждой из ламп 1а и 1б. На данном рисунке вольтметр V измеряет напряжение (или падение напряжения) сразу на двух лампах. Оказывается, что показания вольтметра V, можно вычислить как сумму показаний вольтметров V1 и V2. То есть общее падение напряжения на двух лампах (U) равно сумме падений напряжения на каждой лампе в отдельности (U1 и U2). Тогда U = U1 + U2.
Стоит обратить внимание, что все рассуждения относительно силы тока, напряжения верны лишь при условии, что мы использовали одни и те же лампы, источники тока, вольтметры.
4. Эквивалентное сопротивление последовательно соединенных проводников
Завершающим звеном в исследовании последовательного соединения проводников является формула для общего сопротивления: Rобщ = R1 + R2.
До этого мы рассматривали значения силы тока, напряжения на различных участках цепи. Но исследовали мы проводники (лампы, резисторы), а их главной характеристикой является сопротивление. Обычно во всех электрических цепях пытаются определить эквивалентное (общее) сопротивление цепи, о котором мы говорили на предыдущем уроке. То есть это такое сопротивление, что можно заменить текущую цепь из последовательных проводников другим проводником, но с этим эквивалентным сопротивлением. В данном случае это сопротивление соответствует сопротивлению двух ламп, которые соединены последовательно.
Рассмотрим, как была получена формула для эквивалентного сопротивления. Для этого следует обратиться к закону Ома: . Отсюда можно получить выражение для сопротивления: . Теперь следует вспомнить, что в случае последовательного соединения (в простейшем случае – двух ламп) общее напряжение складывалось из напряжений на отдельной лампе: U = U1 + U2. Учитывая, что сила тока при последовательном соединении на всех участках цепи одинаковая, то можно разделить на нее обе части равенства:
Можно увидеть, что каждая дробь есть не что иное, как соответствующее сопротивление. Тогда R = R1 + R2, где R – эквивалентное сопротивление. Значит, чтобы узнать эквивалентное сопротивление проводников, соединенных последовательно, надо сложить значения их сопротивлений. При этом общее сопротивление будет всегда больше любого из сопротивлений, включенных в такую цепь.
В заключение урока стоит отметить, что если в цепи проводников, ламп или других приборов, которые соединены последовательно, перегорит один из приборов, то цепь разомкнется. Остальные приборы также перестанут работать. Примером этому является все та же елочная гирлянда: если перегорает одна лампочка, то вся гирлянда перестает светиться. Это является основным недостатком последовательного соединения.
1. Общие сведения о параллельном соединении проводников
Соединения проводников бывают различные. Они могут быть параллельными, последовательными и смешанными. На данном уроке мы рассмотрим параллельное соединение проводников и понятие эквивалентного сопротивления.
Параллельным соединением проводников называется такое соединение, при котором начала и концы проводников соединяются вместе. На схеме такое соединение обозначается следующим образом (рис. 1):
Рис. 1. Параллельное соединение трех резисторов
На рисунке изображены три резистора (прибор, основанный на сопротивлении проводника) с сопротивлениями R1, R2, R3. Как видим, начала этих проводников соединены в точке А, концы – в точке Б, а расположены они параллельно друг другу. Также в цепи может быть большее количество параллельно соединенных проводников.
2. Сила тока в цепи при параллельном соединении
Теперь рассмотрим следующую схему (рис. 2):
Рис. 2. Схема для исследования силы тока при параллельном соединении проводников
В качестве элементов цепи мы взяли две лампы (1а, 1б). Они также имеют свое сопротивление, поэтому мы их можем рассматривать наравне с резисторами. Эти две лампы соединены параллельно, соединяются они в точках А и Б. К каждой лампе подсоединен свой амперметр: соответственно, А1 и А2. Также есть амперметр А3, который измеряет силу тока во всей цепи. В цепь еще входит источник питания (3) и ключ (4).
Замкнув ключ, мы будем следить за показаниями амперметров. Амперметр А1 покажет силу тока, равную I1, в лампе 1а, амперметр А2 – cилу тока, равную I2, в лампе 1б. Что же касается амперметра А3, то он покажет силу тока, равную сумме токов в каждой отдельной взятой цепи, соединенных параллельно: I = I1 + I2. То есть, если сложить показания амперметров А1 и А2, то получим показания амперметра А3.
Стоит обратить внимание, что если одна из ламп перегорит, то вторая будет продолжать работать. При этом весь ток будет проходить через эту вторую лампу. Это очень удобно. Так, например, электроприборы в наших домах включаются в цепь параллельно. И если один из них выходит из строя, то остальные остаются в рабочем состоянии.
3. Эквивалентное сопротивление при параллельном соединении
Рис. 3. Схема для нахождения эквивалентного сопротивления при параллельном соединении
На схеме рис. 3 мы оставили один амперметр (2), но добавили в электрическую цепь вольтметр (5) для измерения напряжения. Точки А и Б являются общими и для первой (1а), и для второй лампы (1б), а значит, вольтметр измеряет напряжение на каждой из этих ламп (U1 и U2) и во всей цепи (U). Тогда U = U1 = U2.
Эквивалентным сопротивлением называется сопротивление, которое может заменить все элементы, входящие в данную цепь. Посмотрим, чему же оно будет равно при параллельном соединении. Из закона Ома можно получить, что:
В данной формуле R – эквивалентное сопротивление, R1 и R2 – сопротивление каждой лампочки, U = U1 = U2 – напряжение, которое показывает вольтметр (5). При этом мы используем то, что сумма токов в каждой отдельной цепи равна общей силе тока (I = I1 + I2). Отсюда можно получить формулу для эквивалентного сопротивления:
Если в цепи будет больше элементов, соединенных параллельно, то и слагаемых будет больше. Тогда придется вспомнить, как работать с простыми дробями.
Стоить отметить, что при параллельном соединении эквивалентное сопротивление будет достаточно малым. Соответственно, сила тока будет достаточно большой. Это стоит учитывать при включении в розетки большого количества электрических приборов. Ведь тогда сила тока возрастет, что может привести к перегреванию проводов и пожарам.
На следующем уроке мы рассмотрим другой тип соединения проводников – последовательное.