Обращаем ваше внимание, что в данном разделе разбирается понятие степени только с натуральным показателем и нулём.

Понятие и свойства степеней с рациональными показателями (с отрицательным и дробным) будут рассмотрены в уроках для 8 класса.

Итак, разберёмся, что такое степень числа. Для записи произведения числа самого на себя несколько раз применяют сокращённое обозначение.

Вместо произведения шести одинаковых множителей 4 · 4 · 4 · 4 · 4 · 4 пишут 46 и произносят «четыре в шестой степени».

4 · 4 · 4 · 4 · 4 · 4 = 46

Выражение 46 называют степенью числа, где:

  • 4 — основание степени;
  • 6— показатель степени.

основание и показатель степени

В общем виде степень с основанием «a» и показателем «n» записывается с помощью выражения:

определение степени в буквенном выражении

Запомните!!

Степенью числа «a» с натуральным показателем «n», бóльшим 1, называется произведение «n» одинаковых множителей, каждый из которых равен числу «a».

что такое степень числа

Запись «an» читается так: «а в степени n» или «n-ая степень числа a».

Исключение составляют записи:

  • a2 — её можно произносить как «а в квадрате»;
  • a3 — её можно произносить как «а в кубе».

Конечно, выражения выше можно читать и по определению степени:

  • a2 — «а во второй степени»;
  • a3 — «а в третьей степени».

Особые случаи возникают, если показатель степени равен единице или нулю (n = 1; n = 0).

Запомните!!Степенью числа «а» с показателем n = 1 является само это число:
a1 = a

Любое число в нулевой степени равно единице.
a0 = 1

Ноль в любой натуральной степени равен нулю.
0n = 0

Единица в любой степени равна 1.
1n = 1

Выражение 00 (ноль в нулевой степени) считают лишённым смысла.

  • (−32)0 = 1
  • 0253 = 0
  • 14 = 1

При решении примеров нужно помнить, что возведением в степень называется нахождение числового или буквенного значения после его возведения в степень.

Пример. Возвести в степень.

  • 53 = 5 · 5 · 5 = 125
  • 2,52 = 2,5 · 2,5 = 6,25
  • (3/4)4 = 3/4 * 3/4 * 3/4 * 3/4 = 81/256

Возведение в степень отрицательного числа

Основание степени (число, которое возводят в степень) может быть любым числом — положительным, отрицательным или нулём.

Запомните!!При возведении в степень положительного числа получается положительное число.

При возведении нуля в натуральную степень получается ноль.

При возведении в степень отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.

Рассмотрим примеры возведения в степень отрицательных чисел.

разные примеры возведения в степень отрицательных чисел

Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень, то получается отрицательное число. Так как произведение нечётного количество отрицательных сомножителей отрицательно.

Если же отрицательное число возводится в чётную степень, то получается положительное число. Так как произведение чётного количество отрицательных сомножителей положительно.

Запомните!!Отрицательное число, возведённое в чётную степень, есть число положительное.

Отрицательное число, возведённое в нечётную степень, — число отрицательное.

Квадрат любого числа есть положительное число или нуль, то есть:

a2 ≥ 0 при любом a.

  • 2 · (−3)2 = 2 · (−3) · (−3) = 2 · 9 = 18
  • −5 · (−2)3 = −5 · (−8) = 40

Обратите внимание!

При решении примеров на возведение в степень часто делают ошибки, забывая, что записи (−5)4 и −54 это разные выражения. Результаты возведения в степень данных выражений будут разные.

Вычислить (−5)4 означает найти значение четвёртой степени отрицательного числа.

(−5)4 = (−5) · (−5) · (−5) · (−5) = 625

В то время как найти «−54» означает, что пример нужно решать в 2 действия:

  1. Возвести в четвёртую степень положительное число 5.
    54 = 5 · 5 · 5 · 5 = 625
  2. Поставить перед полученным результатом знак «минус» (то есть выполнить действие вычитание).
    −54 = −625

Пример. Вычислить: −62 − (−1)4

−62 − (−1)4 = −37

  1. 62 = 6 · 6 = 36
  2. −62 = −36
  3. (−1)4 = (−1) · (−1) · (−1) · (−1) = 1
  4. −(−1)4 = −1
  5. −36 − 1 = −37

 

Порядок действий в примерах со степенями

Вычисление значения называется действием возведения в степень. Это действие третьей ступени.

Запомните!!В выражениях со степенями, не содержащими скобки, сначала выполняют вовзведение в степень, затем умножение и деление, а в конце сложение и вычитание.

Если в выражении есть скобки, то сначала в указанном выше порядке выполняют действия в скобках, а потом оставшиеся действия в том же порядке слева направо.

Пример. Вычислить:

пример порядка действийсо степенями

Домашнее задание

Стр. 66 – 67 читать

Упр. 133, 135, 137, 139, 141, 143, 145