Как разложить на множители квадратный трёхчлен

Квадратный трёхчлен — это многочлен вида axbx c.

В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:

axbx c = 0

Левая часть этого уравнения является квадратным трёхчленом.

Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.

Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:

a(− x1)(− x2)

Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:

axbx c = a(− x1)(− x2)

Где левая часть — исходный квадратный трёхчлен.

Пример 1. Разложить на множители следующий квадратный трёхчлен:

x− 8+ 12

Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:

x− 8+ 12 = 0

В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:

разложение квадратного трехчлена на множители рис 2

Итак, x= 6, x= 2. Теперь воспользуемся формулой:

axbx c = a(− x1)(− x2)

В левой части вместо выражения axbx напишем свой квадратный трёхчлен x− 8x + 12. А в правой части подставим имеющиеся у нас значения. В данном случае = 1, x= 6, x= 2

x− 8x + 12 = 1(x − 6)(x − 2) = (x − 6)(x − 2)

Если a равно единице (как в данном примере), то решение можно записать покороче:

x− 8x + 12 = (x − 6)(x − 2)

Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.

Раскроем скобки у правой части равенства, то есть в выражении (x − 6)(x − 2). Если мы всё сделали правильно, то должен получиться квадратный трёхчлен x− 8x + 12

(x − 6)(x − 2) = x− 6− 2+ 12 = x− 8+ 12


Пример 2. Разложить на множители следующий квадратный трёхчлен:

2x− 14+ 24

Приравняем данный квадратный трёхчлен к нулю и решим уравнение:

2x− 14+ 24 = 0

Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:

разложение квадратного трехчлена на множители рис 1

Итак, x= 4, x= 3. Приравняем квадратный трехчлен 2x− 14+ 24 к выражению a(− x1)(− x2), где вместо переменных ax1 и x2 подстáвим соответствующие значения. В данном случае = 2

2x− 14+ 24 = 2(− 4)(− 3)

Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2x− 14+ 24

2(− 4)(− 3) = 2(x− 4−3+ 12) = 2(x− 7+ 12) = 2x− 14+ 24


Как это работает

Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить тождественные преобразования.

Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:

xbx c

Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:

Тогда приведённый квадратный трехчлен xbx c можно разложить на множители следующим образом. Сначала выразим b из уравнения xx= −b. Для этого можно умножить обе его части на −1

разложение квадратного трехчлена на множители рис 12

Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:

разложение квадратного трехчлена на множители рис 13

Теперь подставим выраженные переменные b и c в квадратный трёхчлен xbx c

разложение квадратного трехчлена на множители рис 14

Раскроем скобки там где это можно:

разложение квадратного трехчлена на множители рис 15

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

разложение квадратного трехчлена на множители рис 16

Из первых скобок вынесем общий множитель x, из вторых скобок — общий множитель −x2

разложение квадратного трехчлена на множители рис 17

Далее замечаем, что выражение (− x1) является общим множителем. Вынесем его за скобки:

разложение квадратного трехчлена на множители рис 18

Мы пришли к тому, что выражение xbx c стало равно (− x1)(− x2)

xbx c = (− x1)(− x2)

Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.

Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a

axbx c = a(− x1)(− x2)

Вспоминаем, что если квадратное уравнение не является приведённым, то есть имеет вид axbx = 0, то теорема Виета принимает следующий вид:

Теорема Виета рисунок 66

Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение axbx = 0 стало приведённым, нужно разделить обе его части на a

квадратное уравнение рисунок 122

Далее чтобы квадратный трёхчлен вида axbx c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства разложение квадратного трехчлена на множители рис 19 и разложение квадратного трехчлена на множители рис 20

Для начала выразим b и c. В первом равенстве умножим обе части на a. Затем обе части получившегося равенства умножим на −1

разложение квадратного трехчлена на множители рис 3

Теперь из второго равенства выразим c. Для этого умножим обе его части на a

разложение квадратного трехчлена на множители рис 4

Теперь подставим выраженные переменные b и с в квадратный трёхчлен axbx c. Для наглядности каждое преобразование будем выполнять на новой строчке:

разложение квадратного трехчлена на множители рис 5

Здесь вместо переменных b и c были подставлены выражения −ax− ax2 и ax1x2, которые мы ранее выразили из теоремы Виета. Теперь раскроем скобки там где это можно:

разложение квадратного трехчлена на множители рис 6

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

разложение квадратного трехчлена на множители рис 7

Теперь из первых скобок вынесем общий множитель ax, а из вторых — общий множитель −ax2

разложение квадратного трехчлена на множители рис 9

Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:

разложение квадратного трехчлена на множители рис 10

Вторые скобки содержат общий множитель a. Вынесем его за скобки. Его можно расположить в самом начале выражения:

разложение квадратного трехчлена на множители рис 11

Мы пришли к тому, что выражение axbx c стало равно a(− x1)(− x2)

axbx c = a(− x1)(− x2)

Отметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители. Действительно, если не найдены корни квадратного трёхчлена, то нéчего будет подставлять в выражение a(− x1)(− x2) вместо переменных x1 и x2.

Примеры разложений

Пример 1. Разложить на множители следующий квадратный трёхчлен:

3x− 2− 1

Найдём корни квадратного трёхчлена:

разложение квадратного трехчлена на множители рис 21

Воспользуемся формулой разложения. В левой части напишем квадратный трёхчлен 3x− 2− 1, а в правой части — его разложение в виде a(− x1)(− x2), где вместо ax1 и x2 подстáвим соответствующие значения:

разложение квадратного трехчлена на множители рис 23

разложение квадратного трехчлена на множители рис 22

Во вторых скобках можно заменить вычитание сложением:

разложение квадратного трехчлена на множители рис 24


Пример 2. Разложить на множители следующий квадратный трёхчлен:

3 − 11x + 6x2

Упорядочим члены так, чтобы старший коэффициент располагался первым, средний — вторым, свободный член — третьим:

6x2 − 11x + 3

Найдём корни квадратного трёхчлена:

разложение квадратного трехчлена на множители рис 25

Воспользуемся формулой разложения:

разложение квадратного трехчлена на множители рис 26

Упростим получившееся разложение. Вынесем за первые скобки общий множитель 3

разложение квадратного трехчлена на множители рис 27

Теперь воспользуемся сочетательным законом умножения. Напомним, что он позволяет перемножать сомножители в любом порядке. Умножим 3 на вторые скобки. Это позвóлит избавиться от дроби в этих скобках:

разложение квадратного трехчлена на множители рис 28


Пример 3. Разложить на множители следующий квадратный трёхчлен:

3x7x − 6

Найдём корни квадратного трёхчлена:

разложение квадратного трехчлена на множители рис 29

Воспользуемся формулой разложения:

разложение квадратного трехчлена на множители рис 30


Пример 4. Найдите значение k, при котором разложение на множители трёхчлена 3x− 8k содержит множитель (− 2)

Если разложение содержит множитель (− 2), то один из корней квадратного трёхчлена равен 2. Пусть корень 2 это значение переменной x1

разложение квадратного трехчлена на множители рис 31

Чтобы найти значение k, нужно знать чему равен второй корень. Для его определения воспользуемся теоремой Виета.

В данном случае квадратный трёхчлен не является приведённым, поэтому сумма его корней будет равна дроби 8 na 3, а произведение корней — дроби k na 3

разложение квадратного трехчлена на множители рис 32

Выразим из первого равенства переменную x2 и сразу подстáвим найденное значение во второе равенство вместо x2

разложение квадратного трехчлена на множители рис 33

Теперь из второго равенства выразим k. Так мы найдём его значение.

разложение квадратного трехчлена на множители рис 34


Пример 5. Разложить на множители следующий квадратный трёхчлен:

разложение квадратного трехчлена на множители рис 35

Перепишем данный трёхчлен в удобный для нас вид. Если в первом члене заменить деление умножением, то получим разложение квадратного трехчлена на множители рис 36. Если поменять местами сомножители, то получится 1 na 2 x v 2. То есть коэффициент a станет равным одна вторая

Коэффициент b можно перевести в обыкновенную дробь. Так проще будет искать дискриминант:

разложение квадратного трехчлена на множители рис 37

Найдём корни квадратного трёхчлена:

разложение квадратного трехчлена на множители рис 38

Воспользуемся формулой разложения: