Правило умножения многочлена на многочлен
Рассмотрим пример, а после решения сформулируем правило умножения многочлена на многочлен:
- Возьмем два многочлена (a + b) и (c + d) и выполним их умножение.
- Сначала составим их произведение: (a + b)(c + d).
- Теперь обозначим (c + d) как x. После этой замены произведение примет вид: (a + b)x.
- Выполним умножение многочлена на одночлен: (a + b)x = ax + bx.
- Проведем обратную замену x на (c + d):
a(c + d) + b(c + d). Преобразуем: ac + ad + bc + bd. - Как изменилось произведение исходных многочленов:
(a + b)(c + d) = ac + ad + bc + bd.
Как раз так и выглядит формула умножения многочлена на многочлен.
|
Алгоритм умножения многочлена на многочлен:
-
- Первый член первого многочлена умножить на каждый член второго многочлена. Второй член первого многочлена умножить на каждый член второго многочлена. И так далее.
-
- Сложить полученные произведения.
-
- Преобразовать полученную сумму в многочлен стандартного вида.
Рассмотрим пример умножения многочлена на многочлен:
(6x – 2a) * (4 – 3x).
Как решаем:
- Умножим последовательно первый одночлен 6x из первой скобки на оба одночлена второй скобки.
- Уумножим второй одночлен −2a первой скобки на оба одночлена второй скобки.
Ответ: (6x – 2a) * (4 – 3x) = 24x – 18x2 – 8a + 6ax.
Рассмотрим пример умножения трех многочленов:
(x – 2) * (3x + 1) * (4x – 3).
Как решаем:
- Умножим первый многочлен на второй. Результат запишем в скобках.
- Перемножим получившийся многочлен и третий многочлен. Приведем подобные одночлены.
Ответ: (x – 2) * (3x + 1) * (4x – 3) = 12x3 – 29x2 + 7x + 6.
Теперь мы знаем все из темы умножения многочлена на многочлен. Осталось отточить на практике новый навык и ловить хорошие и отличные отметки на контрольных.
Примеры умножения многочлена на многочлен
Рассмотрим еще несколько примеров, чтобы закрепить пройденный материал.
Пример 1. Выполнить умножение многочленов:
2 − 3x и x2 − 7x + 1.
Как решаем:
Запишем произведение: (2 − 3x)(x2 − 7x + 1).
Составим сумму произведений каждого члена многочлена (2 − 3x) на каждый член многочлена (x2 − 7x + 1). Для этого первый член первого многочлена «2» умножим на каждый член второго многочлена: 2x2, 2(−7x) и 2*1.
Теперь второй член первого многочлена «−3x» умножим на каждый член второго многочлена: −3xx2, −3x(−7x) и −3x*1.
Из полученных выражений составим сумму: 2x2 + 2(−7x) + 2*1 − 3xx2 − 3x(−7x) − 3x*1.
Чтобы убедиться, что мы все сделали правильно, посчитаем количество членов в полученной сумме. Их шесть. Так и должно быть, так как исходные многочлены состоят из 2 и 3 членов: 2 * 3 = 6.
Осталось полученную сумму преобразовать в многочлен стандартного вида:
2x2 + 2(−7x) + 2*1 − 3xx2 − 3x(−7x) − 3x*1 = 2x2 − 14 x + 2 − 3x3 + 21x2 − 3x = (2x2 + 21x2) + (−14x − 3x) + 2 − 3x3 = 23x2 − 17x + 2 − 3x3.
Получается, что (2 − 3x)(x2 − 7x + 1) = 23x2 − 17x + 2 − 3x3.
Ответ: (2 − 3x)(x2 − 7x + 1) = 23x2 − 17x + 2 − 3x3.
Пример 2. Найти произведение трех многочленов:
x2 + xy − 1, x + y и 2y − 3.
Как решаем:
Запишем их произведение: (x2 + xy − 1)(x + y)(2y − 3).
Умножим первые два многочлена:
(x2 + xy − 1)(x + y) = x2x + x2y + xyx + xyy − 1x − 1y = x3 + 2x2y + xy2 − x − y.
Таким образом: (x2+ xy − 1)(x + y)(2y − 3) = (x3 + 2x2y + xy2 − x − y)(2y − 3).
Снова выполним умножение двух многочленов:
(x3 + 2x2y + xy2 − x − y)(2y − 3) = x32y + x3(−3) + 2x2y2y + 2x2y(−3) + xy22y + xy2(−3) − x2y − x(−3) − y2y − y(−3) = 2x3y − 3x3 + 4x2y2 − 6x2y + 2xy3 − 3xy2 − 2xy + 3x − 2y2 + 3y.
Ответ: (x2 + xy − 1)(x + y)(2y − 3) = 2x3y − 3x3 + 4x2y2 − 6x2y + 2xy3 − 3xy2 − 2xy + 3x − 2y2 + 3y.
Отметьтесь на уроке