Основное свойство дроби

Основное свойство дроби говорит о том, что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то получится равная ей дробь. Это означает, что значение дроби не изменится.

Например, рассмотрим дробь одна вторая.  Умножим её числитель и знаменатель на одно и то же число, например на число 2

111224

Получили новую дробь две четвертых.  Если верить основному свойству дроби, то дроби одна вторая  и две четвертых равны между собой. Так ли это? Давайте проверим, нарисовав эти дроби в виде кусочков пиццы:

половина и две четверти рисунок

Посмотрите внимательно на эти два рисунка. Первый рисунок иллюстрирует дробь одна вторая (один кусок из двух), а второй иллюстрирует дробь две четвертых (два куска из четырёх). Если хорошо присмотреться на эти куски, то можно убедиться, что у них одинаковые размеры. Различие лишь в том, что разделаны они по-разному. Первая пицца была разделана на два куска, и с неё взяли один кусок. А вторая пицца была разделана на четыре куска, и с неё взяли два куска.

Поэтому между дробями одна вторая и две четвертых можно поставить знак равенства (=), поскольку они равны одному и тому же значению:

1112243

Теперь испытаем основное свойство дроби, разделив числитель и знаменатель на одно и то же число.

Рассмотрим дробь 4 на 8. Давайте разделим её числитель и знаменатель на одно и то же число, например на число 2

1148242

Получили новую дробь две четвертых. Если верить основному свойству дроби, то дроби 4 на 8 и две четвертых равны между собой. Так ли это? Давайте проверим,  нарисовав эти дроби в виде кусочков пиццы:

четыре восьмых и две четвертых рисунок

Посмотрите внимательно на эти два рисунка. Первый рисунок иллюстрирует дробь 114824 (четыре куска из восьми), а второй иллюстрирует дробь две четвертых (два куска из четырёх). Если хорошо присмотреться на эти куски, то можно убедиться, что у них одинаковые размеры. Различие лишь в том, что разделаны они по-разному. Первая пицца была разделана на восемь кусков, и с неё взяли четыре куска. А вторая пицца была разделана на четыре куска, и с неё взяли два куска.

Поэтому между дробями 4 на 8 и две четвертых можно поставить знак равенства (=), поскольку они равны одному и тому же значению:

1148243

Теперь мы полностью проверили, как работает основное свойство дроби, и убедились, что работает оно замечательно.

Число, на которое умножается числитель и знаменатель, называется дополнительным множителем. Запомните это обязательно!


Сокращение дробей

Дроби можно сокращать. Сократить — значит сделать дробь короче и проще для восприятия. Например, дробь одна вторая выглядит намного проще и красивее, чем дробь 112040 .

Если при решении примеров получается большая и некрасивая дробь, то нужно попытаться её сократить.

Сокращение дроби опирается на основное свойство дроби. Поэтому, прежде чем изучать сокращение дробей, обязательно изучите основное свойство дроби.

Деление числителя и знаменателя на их наибольший общий делитель называется сокращением дроби.

Пример 1. Сократить дробь две четвертых

Итак, нужно разделить числитель и знаменатель дроби две четвертых на наибольший общий делитель чисел 2 и 4.

В данном случае дробь простая и для неё НОД ищется легко. НОД чисел 2 и 4 это число 2. Значит, числитель и знаменатель дроби две четвертых надо разделить на 2

132412

В результате дробь две четвертых обратилась в более простую дробь одна вторая. Значение исходной дроби при этом не изменилось, поскольку сокращение подразумевает деление числителя и знаменателя на одно и то же число. А это действие, как было указано ранее, не меняет значение дроби.

дроби рисунок сд

На рисунке представлены дроби две четвертых и одна вторая в виде кусочков пиццы. До сокращения и после сокращения они имеют одинаковые размеры. Разница лишь в том, что раздéланы они по-разному.


Пример 2. Сократим дробь 112040

Чтобы сократить дробь 112040, нужно числитель и знаменатель этой дроби разделить на наибольший общий делитель чисел 20 и 40.

НОД чисел 20 и 40 это число 20. Поэтому делим числитель и знаменатель дроби 112040 на 20

13204012


Пример 3. Сократим дробь Тридцать два тридцать шестых

Чтобы сократить дробь Тридцать два тридцать шестых, нужно числитель и знаменатель этой дроби разделить на наибольший общий делитель чисел 32 и 36.

НОД чисел 32 и 36 это число 4. Поэтому делим числитель и знаменатель дроби Тридцать два тридцать шестых на 4

13323689

Если в числителе и знаменателе располагаются простые числа, то такую дробь сократить нельзя — она не сокращается. Такие дроби называют несократимыми. Например, следующие дроби являются несократимыми:

1312343557

Напомним, что простыми называются числа, которые делятся только на единицу и самих себя.


Второй способ сокращения дроби

Второй способ является короткой версией первого способа. Суть его заключается в том, что пропускается подробное разъяснение того, на что был разделён числитель и знаменатель.

К примеру, вернёмся к дроби Тридцать два тридцать шестых. Эту дробь мы сократили на 4, то есть разделили числитель и знаменатель этой дроби на число 4

13323689

Теперь представьте, что в данном выражении отсутствует конструкция Тридцать два тридцать шестых сокращение на четыре , и сразу записан ответ Восемь девятых . Получится следующее выражение:

Тридцать два тридцать шестых равно восемь девятых

Суть в том что число, на которое разделили числитель и знаменатель, хранят в уме. В нашем случае числитель и знаменатель делят на 4 — это число и будем хранить в уме.

Сначала делим числитель на число 4. Полученный ответ записываем рядом с числителем, предварительно зачеркнув его:

Тридцать два тридцать шестых разделили числитель

Затем таким же образом делим знаменатель на число 4. Полученный ответ записываем рядом со знаменателем, предварительно зачеркнув его:

Тридцать два тридцать шестых разделили знаменатель

Затем собираем новую дробь. В числитель отправляем новое число 8 вместо 32, а в знаменатель отправляем новое число 9 вместо 36

Сокращение тридцати двух на тридцать шестых на четыре вторым способом

Происходит своего рода замена одной дроби на другую. Значение новой дроби равно значению предыдущей дроби, поскольку срабатывает основное свойство дроби, которое говорит о том что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то получится равная ей дробь.

Также, дроби можно сокращать, предварительно разложив на простые множители числитель и знаменатель.

Например, сократим дробь Девять двадцать седьмых, предварительно разложив на простые множители числитель и знаменатель:

Девять двадцать седьмых разложены числитель и знаменатель

Итак, мы разложили числитель и знаменатель дроби Девять двадцать седьмых на множители. Теперь применяем второй способ сокращения. В числителе и в знаменателе выбираем по множителю и делим выбранные множители на НОД этих множителей.

Давайте сократим по тройке в числителе и в знаменателе. Для этого разделим эти тройки на 3 (на их наибольший общий делитель). Получим следующее выражение:Девять двадцать седьмых разложены числитель и знаменатель1

Сократить можно ещё по тройке в числителе и в знаменателе:

Девять двадцать седьмых разложены числитель и знаменатель2

Дальше сокращать больше нéчего. Последнюю тройку в знаменателе просто так сократить нельзя, поскольку в числителе нет множителя, который можно было бы сократить вместе с этой тройкой.

Записываем новую дробь, в числителе и в знаменателе которой будут новые множители.

Девять двадцать седьмых разложены числитель и знаменатель3

 Получили ответ одна третья. Значит, при сокращении дроби Девять двадцать седьмых получается новая дробь одна третья.

Не рекомендуется пользоваться вторым способом сокращения дроби и способом разложения на простые множители числителя и знаменателя, если человек только нáчал изучать математику. Практика показывает, что это оказывается сложным на первых этапах.

Поэтому, если испытываете затруднения при использовании второго способа, то пользуйтесь старым добрым способом сокращения: делите числитель и знаменатель дроби на их наибольший общий делитель. Выражение в таком случае получается простым, понятным и красивым. Так, предыдущий пример может быть решён старым способом и будет выглядеть так:

Девять двадцать седьмых сокращение старым методом

Сравните это выражение с выражением, которое мы получили, когда пользовались вторым способом:

Девять двадцать седьмых разложены числитель и знаменатель3

Первое выражение намного понятнее, аккуратнее и короче. Не правда ли?


Задания для самостоятельного решения

Задание 1. Запишите в виде дроби следующий рисунок:
Задание 2. Запишите в виде дроби следующий рисунок:
Задание 3. Запишите в виде дроби следующий рисунок:
Задание 4. Запишите в виде дроби следующий рисунок:
Задание 5. Запишите в виде дроби следующий рисунок:
Задание 6. Сократите следующую дробь на 3
Задание 7. Сократите следующую дробь на 3 вторым способом
Задание 8. Сократите следующую дробь на 5

Задание 9. Сократите следующую дробь на 5 вторым способом
Задание 10. Сократите следующие дроби:
Задание 11. Сократите следующие дроби вторым способом: