Рычаги
«Дайте мне точку опоры, и я переверну Землю!»
Архимед
В данной теме речь пойдёт о простых механизмах, используемых человечеством с незапамятных времен, и более подробно остановимся на самом распространенном из них — рычаге.
Ранее говорилось о механической работы и мощности. Механическая работа — это скалярная физическая величина, пропорциональная приложенной к телу силе и пройденному телом пути. Единицей работы в системе СИ является Дж (джоуль). Мощность — это скалярная физическая величина, которая характеризует быстроту совершения работы. Единицей мощности в системе СИ является Вт (ватт).
С незапамятных времен человечество использует различные приспособления для совершения механической работы. Известно, что очень тяжелые предметы достаточно трудно, а временами и невозможно, передвинуть непосредственно. Однако используя достаточно длинную палку, или, как ее еще называют, рычаг, это можем сделать достаточно легко.
Если посетить любое современное производство, то можно увидеть, как работают машины. Они, как разумные существа, прессуют, гнут, режут большие металлические листы, считают и сортируют, взвешивают и упаковывают различные изделия.
Однако если рассмотреть любое устройство такой сложной конструкции, то можно заметить, что ее механическая составляющая представлена сочетаниями всего шести видов простых механизмов — рычагов, блоков, винтов, клиньев, воротов и наклонных плоскостей.
В быту также часто используются простые механизмы — это топор, лопата, ножницы, мясорубка и многое другое.
Зачем нам нужны простые механизмы? Для ответа на этот вопрос, рассмотрим простой пример. Пусть необходимо поднять груз на некоторую высоту. Для этого можно воспользоваться одним из шести простых механизмов. Во всех шести случаях действие силы приведет к подъему тела. Но эта сила вовсе не направлена вверх и, за исключением одного случая, не приложена непосредственно к поднимаемому телу. Но самое важное здесь то, что эта сила во всех случаях меньше веса поднимаемого тела. Значит, использование простых механизмов позволяет получить выигрыш в силе.
Таким образом, простые механизмы — это приспособления, которые служат для преобразования силы.
Но простые механизмы служат не только для подъема тела. Их используют, когда режут ножницами бумагу или ткань, колют дрова, гребут веслами и т. д. Более того, эти механизмы есть и в теле человека.
Простые механизмы использовались человеком с древнейших времен. Воображение каждого туриста, посетившего остров Пасхи, поражают древние каменные изваяния огромных размеров, расположенные по всему острову. В создании этих тяжелых каменных изваяний (а на одном из них только шляпа имеет массу около 3 т), при их подъеме в вертикальное положение использовались простые механизмы. Аналогично строились и великие египетские пирамиды.
Одним из наиболее распространенных простых механизмов является рычаг. Именно он позволяет малой силой уравновесить большую силу. Рычаги присутствуют во многих устройствах.
Что же такое рычаг и как получить выигрыш в силе, пользуясь им? Рычагом является любое твердое тело, которое может поворачиваться относительно неподвижной оси или опоры. Все рычаги делятся на 2 вида: рычаг первого рода и второго рода.
Рычагом первого рода называется рычаг, ось вращения которого расположена между точками приложения сил, а сами силы направлены в одну сторону. Примером могут служить ножницы, коромысло равноплечих весов и др.
Рычагом второго рода называется рычаг, ось вращения которого расположена по одну сторону от точек приложения сил, а сами силы направлены противоположно друг другу. Это, например, гаечные ключи, двери и т.д.
При каких условиях рычаг находится в равновесии? Поставим опыт. (Сразу отметим, что все выводы, которые будут сделаны нами для рычага первого рода, будут справедливы и для рычага второго рода). Возьмем в качестве рычага линейку длиной 1 метр, и поместим ее на неподвижную опору, находящуюся ровно посередине. На расстоянии 0,25 м от опоры поставим гирю весом 8 Н. Естественно, конец рычага под действием веса гири опустится. Теперь надавим на свободный конец рычага динамометром и поднимем гирю так, чтобы рычаг установился горизонтально. При этом динамометр покажет силу, равную 4 Н.
Так почему же неравные силы, которые приложены к рычагу, удерживают его в равновесии? Все потому, что результат действия силы на рычаг определяется не только ее модулем, но и расстоянием от точки опоры до линии действия силы.
Расстояние от точки опоры до прямой, вдоль которой действует сила, называется плечом этой силы.
Рассмотрим схему данного опыта.
Кроме сил F1 и F2, плечи которых обозначены, как l1 и l2, на рычаг будут действовать еще две силы — сила тяжести рычага и сила упругости опоры.
Как видно из рисунка, плечи этих сил равны нулю, поэтому на равновесие рычага они не влияют. Теперь сравним силы F1 и F2 и их плечи. Сила F2 в два раза меньше силы F1, а плечо силы F2 в два раза больше плеча силы F1.
Что произойдет, если плечо силы F2 увеличить, скажем, в 5 или 25 раз? То и сила уменьшилась бы в 5 или 25 раз. Т.е., чем больше плечо, тем меньше сила, с помощью которой можно поднять груз, лежащий на противоположной от опоры части рычага.
Первое письменное объяснение равновесия рычага было дано в третьем веке до нашей эры древнегреческим ученым Архимедом, который впервые смог связать понятия силы, груза и плеча. Закон равновесия, сформулированный Архимедом, до сих пор используется и звучит так: рычаг находится в равновесии при условии, что приложенные к нему силы обратно пропорциональны длинам их плеч.
– условие равновесия рычага
По легенде, осознав значимость своего открытия, Архимед воскликнул: «Дайте мне точку опоры, и я переверну Землю!». Правда, сделать это при своей жизни Архимед бы не смог. Да и сейчас тоже. Все дело в том, что для поднятия нашей планеты хотя бы на один сантиметр, требуется неимоверно длинный рычаг, который пришлось бы двигать в течение нескольких десятков миллионов лет со скоростью 1 см в минуту.
Упражнения.
Задача 1. На одном конце линейки длиной 100 см подвешена гиря массой 500 г. Посередине линейки снизу находится опора, относительно которой линейка может свободно поворачиваться. Где надо подвесить второй груз массой 750 г, чтобы линейка находилась в равновесии?
Задача 2. На концах легкого стержня длиной 32 см подвешены грузы массами 40 г и 120 г. Где нужно подпереть стержень, чтобы он находился в равновесии?
Основные выводы:
– Простые механизмы, служат для преобразования механического действия на тело, позволяя изменить точку приложения силы, ее модуль и направление.
– Простые механизмы, как рычаг, блок, ворот, клин, наклонная плоскость и винт являются составными частями конструкций любых механических устройств.
– Рычаг – это любое твердое тело, которое может поворачиваться относительно неподвижной опоры или оси.
– Рычаги делятся на два вида — рычаг первого и рычаг второго рода.
– Рычагом первого рода называется рычаг, ось вращения которого расположена между точками приложения сил, а сами силы направлены в одну сторону.
– Рычагом второго рода называется рычаг, ось вращения которого расположена по одну сторону от точек приложения сил, а сами силы направлены противоположно друг другу.
– Плечо силы – это расстояние от точки опоры до прямой, вдоль которой действует сила.
– Условие равновесия рычага: рычаг находится в равновесии при условии, что приложенные к нему силы обратно пропорциональны длинам их плеч.
– Рычаг дает выигрыш в силе во столько раз, во сколько раз плечо прилагаемой силы больше плеча веса удерживаемого груза.
Домашняя работа
Стр. 170 — 175 читать