Определение основных понятий
Прежде чем погрузиться в последовательность расчетов и узнать, чему равна площадь круга, важно выяснить разницу между понятиями окружности и круга.
Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.
Круг — множество точек на плоскости, которые удалены от центра на расстоянии, не превышающем радиус.
Если говорить простым языком, окружность — это замкнутая линия, как, например, кольцо и шина. Круг — плоская фигура, ограниченная окружностью, как монетка или крышка люка.
Формула вычисления площади круга
Давайте разберем несколько формул расчета площади круга. Поехали!
Площадь круга через радиус
S = π × r2, где r — это радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она приблизительно равна 3,14.
Площадь круга через диаметр
S = d2 : 4 × π, где d — это диаметр.
Площадь круга через длину окружности
S = L2 : (4 × π), где L — это длина окружности.
Популярные единицы измерения площади:
- квадратный миллиметр (мм2);
- квадратный сантиметр (см2);
- квадратный дециметр (дм2);
- квадратный метр (м2);
- квадратный километр (км2);
- гектар (га).
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Задачи. Определить площадь круга
Мы разобрали три формулы для вычисления площади круга. А теперь тренироваться — поехали!
Задание 1. Как найти площадь круга по диаметру, если значение радиуса равно 6 см.
Как решаем:
- Диаметр окружности равен двум радиусам.
- Используем формулу: S = π × d2 : 4.
- Подставим известные значения: S = 3,14 × 122 : 4.
S = 113,04 см2.
Ответ: 113,04 см2.
Задание 2. Найти площадь круга, если известен диаметр, равный 90 мм.
Как решаем:
- Используем формулу: S = π × d2 : 4.
- Подставим известные значения: S = 3,14 × 902 : 4.
S = 6358,5 мм2.
Ответ: 6358,5 мм2.
Задание 3. Найти длину окружности при радиусе 3 см.
Как решаем:
- Отношение длины окружности к диаметру является постоянным числом.
π = L : d
- Получается: L = d × π.
- Так как диаметр равен двум радиусам, то формула длины окружности примет вид: L = 2 × π × r.
- Подставим значение радиуса: L = 2 × 3,14 × 3.
L = 18,84 см2.
Ответ: 18,84 см2.
Теоретический материал для самостоятельного изучения
Шаром называется множество всех точек пространства, находящихся от данной точки на расстоянии, не больше данного R.
Радиусом шара называют всякий отрезок, соединяющий центр шара с точкой шаровой поверхности.
Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром шара.
Объем шара равен